
Copyright © 2004, Oracle. All rights reserved.

Manipulating Data

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe each data manipulation language (DML)

statement
• Insert rows into a table
• Update rows in a table
• Delete rows from a table
• Control transactions

Copyright © 2004, Oracle. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:
– Add new rows to a table
– Modify existing rows in a table
– Remove existing rows from a table

• A transaction consists of a collection of DML
statements that form a logical unit of work.

Copyright © 2004, Oracle. All rights reserved.

Adding a New Row to a Table

DEPARTMENTS
New
row

Insert new row
into the

DEPARTMENTS table

Copyright © 2004, Oracle. All rights reserved.

INSERT Statement Syntax

• Add new rows to a table by using the INSERT
statement:

• With this syntax, only one row is inserted at a
time.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

Copyright © 2004, Oracle. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each
column.

• List values in the default order of the columns in
the table.

• Optionally, list the columns in the INSERT clause.

• Enclose character and date values in single
quotation marks.

INSERT INTO departments(department_id,
department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);
1 row created.

Copyright © 2004, Oracle. All rights reserved.

INSERT INTO departments
VALUES (100, 'Finance', NULL, NULL);
1 row created.

INSERT INTO departments (department_id,
department_name)

VALUES (30, 'Purchasing');
1 row created.

Inserting Rows with Null Values

• Implicit method: Omit the column from the
column list.

• Explicit method: Specify the NULL keyword in the
VALUES clause.

Copyright © 2004, Oracle. All rights reserved.

INSERT INTO employees (employee_id,
first_name, last_name,
email, phone_number,
hire_date, job_id, salary,
commission_pct, manager_id,
department_id)

VALUES (113,
'Louis', 'Popp',
'LPOPP', '515.124.4567',
SYSDATE, 'AC_ACCOUNT', 6900,
NULL, 205, 100);

1 row created.

Inserting Special Values

The SYSDATE function records the current date and
time.

Copyright © 2004, Oracle. All rights reserved.

• Add a new employee.

• Verify your addition.

Inserting Specific Date Values

INSERT INTO employees
VALUES (114,

'Den', 'Raphealy',
'DRAPHEAL', '515.127.4561',
TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),
'AC_ACCOUNT', 11000, NULL, 100, 30);

1 row created.

Copyright © 2004, Oracle. All rights reserved.

Copying Rows
from Another Table

• Write your INSERT statement with a subquery:

• Do not use the VALUES clause.
• Match the number of columns in the INSERT

clause to those in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

4 rows created.

Copyright © 2004, Oracle. All rights reserved.

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table:

Copyright © 2004, Oracle. All rights reserved.

• Modify existing rows with the UPDATE statement:

• Update more than one row at a time (if required).

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

UPDATE Statement Syntax

Copyright © 2004, Oracle. All rights reserved.

• Specific row or rows are modified if you specify
the WHERE clause:

• All rows in the table are modified if you omit the
WHERE clause:

Updating Rows in a Table

UPDATE employees
SET department_id = 70
WHERE employee_id = 113;
1 row updated.

UPDATE copy_emp
SET department_id = 110;
22 rows updated.

Copyright © 2004, Oracle. All rights reserved.

UPDATE employees
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 205)

WHERE employee_id = 114;
1 row updated.

Updating Two Columns with a Subquery

Update employee 114’s job and salary to match that of
employee 205.

Copyright © 2004, Oracle. All rights reserved.

UPDATE copy_emp
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

1 row updated.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update
rows in a table based on values from another table:

Copyright © 2004, Oracle. All rights reserved.

Delete a row from the DEPARTMENTS table:

Removing a Row from a Table

DEPARTMENTS

Copyright © 2004, Oracle. All rights reserved.

DELETE Statement

You can remove existing rows from a table by using
the DELETE statement:

DELETE [FROM] table
[WHERE condition];

Copyright © 2004, Oracle. All rights reserved.

Deleting Rows from a Table

• Specific rows are deleted if you specify the WHERE
clause:

• All rows in the table are deleted if you omit the
WHERE clause:

DELETE FROM departments
WHERE department_name = 'Finance';

1 row deleted.

DELETE FROM copy_emp;
22 rows deleted.

Copyright © 2004, Oracle. All rights reserved.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove rows
from a table based on values from another table:
DELETE FROM employees
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name

LIKE '%Public%');
1 row deleted.

Copyright © 2004, Oracle. All rights reserved.

TRUNCATE Statement

• Removes all rows from a table, leaving the table
empty and the table structure intact

• Is a data definition language (DDL) statement
rather than a DML statement; cannot easily be
undone

• Syntax:

• Example:

TRUNCATE TABLE table_name;

TRUNCATE TABLE copy_emp;

Copyright © 2004, Oracle. All rights reserved.

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM employees
WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000, 50);

1 row created.

Using a Subquery in an INSERT Statement

Copyright © 2004, Oracle. All rights reserved.

Using a Subquery in an INSERT Statement

Verify the results:

SELECT employee_id, last_name, email, hire_date,
job_id, salary, department_id

FROM employees
WHERE department_id = 50;

